
http://www.iaeme.com/IJCET/index.asp 40 editor@iaeme.com

International Journal of Computer Engineering & Technology (IJCET)
Volume 7, Issue 5, Sep–Oct 2016, pp. 40–55, Article ID: IJCET_07_05_006
Available online at
http://www.iaeme.com/ijcet/issues.asp?JType=IJCET&VType=7&IType=5
Journal Impact Factor (2016): 9.3590 (Calculated by GISI) www.jifactor.com
ISSN Print: 0976-6367 and ISSN Online: 0976–6375
© IAEME Publication

ODD EVEN BASED BINARY SEARCH
Karthick S

MCA Scholar, Department of Computer Science,
Christ University, Bengaluru, Karnataka, India

ABSTRACT
Searching is one of the important operations in computer science. Retrieving information from

huge databases takes a lot of processing time to get the results. The user has to wait till the completion
of processing to find whether search is successful or not. In this research paper, it provides a detailed
study of Binary Search and how the time complexity of Binary Search can be reduced by using Odd
Even Based Binary Search Algorithm, which is an extension of classical binary search strategy. The
worst case time complexity of Binary Search can be reduced from O(log2N) to O(log2(N-M)) where
N is total number of items in the list and M is total number of even numbers if search KEY is ODD
or M is total number of odd numbers if search KEY is EVEN. Whenever the search KEY is given, first
the KEY is determined whether it is odd or even. If given KEY is odd, then only odd numbers from
the list are searched by completely ignoring list of even numbers. If given KEY is even, then only
even numbers from the list are searched by completely ignoring list of odd numbers. The output of
Odd Even Based algorithm is given as an input to Binary Search algorithm. Using Odd Even Based
Binary Search algorithm, the worst case performances in Binary Search algorithm are converted
into best case or average case performance. Therefore, it reduces total number of comparisons, time
complexity and usage of various computer resources.

Key words: Algorithm Efficiency, Binary Search, Odd Even Based Binary Search, Searching, Time
Complexity.

Cite this Article: Karthick S, Odd Even Based Binary Search. International Journal of Computer
Engineering and Technology, 7(5), 2016, pp. 40–55.
http://www.iaeme.com/ijcet/issues.asp?JType=IJCET&VType=7&IType=5

1. INTRODUCTION
Searching techniques are widely used to retrieve the information. There are various algorithms developed
for searching. The most commonly used searching algorithms are Linear Search and Binary Search. The
worst case time complexity of Linear Search is O(N) and Binary Search is O(log2N) [1], [2]. In this research
paper, a new algorithm proposed having worst case time complexity of O (log2 (N-M)). The running time of
an algorithm is called time complexity. The time complexity of an existing Binary Search algorithm reduced
by using Odd Even Based Binary Search Algorithm. The output of Odd Even Based Algorithm is given as
an input to Binary Search Algorithm.

The rest of the research paper is organized as; Section 2 describes the related work. Section 3 describes
proposed algorithm and the way in which it can be implemented. Section 4 describes the performance
analysis of Binary Search, Odd Even Based Binary Search, test results and conclusion of the paper.

Odd Even Based Binary Search

http://www.iaeme.com/IJCET/index.asp 41 editor@iaeme.com

2. RELATED WORK
Linear Search is one of the simplest searching techniques which does not expect the data to be arranged in
specific order [1]. In linear search, searching operation begins by comparing the key with each and every
element one by one from the beginning to end. If the search is successful, then either the element or its index
shall be returned [1], [2]. The best case time complexity of linear search is O(1) when the search KEY is
located in the beginning of the list, average case time complexity is O((N+1)/2) and worst case time
complexity is O(N) [1], [2]. Linear Search becomes inefficient, when key has to be searched in large list of
data items. If the element is not present or present at the end of the list then, very high number of comparisons
are required and which is very much time consuming task [1]. Nitin Arora et al. [3] proposed Two Way
Linear Search, in which there are two pointers used, pointing to beginning and end of the list. The beginning
pointer is incremented and end pointer is decremented every step to find the search key in the list. It reduces
the time complexity to some extent. The main disadvantages of this method are, there is a need of maintaining
multiple pointers inside linear search algorithm and the time complexity is reduced if and only if key has to
be searched is located after the middle of the array. Alwin Francis et al. [4] proposed Modulo Ten Search –
An Alternative to Linear Search, in which to find search key in the list, the remainder of that key divided by
10 is taken and searching is initiated only in that part of the list. In order to implement this, based on the
maximum length of the digit in the list, multiple lists are maintained. The main disadvantage of this method
is, there is a need of maintaining multiple lists based on the maximum length of the digit in the list which
increases space complexity. All these algorithms provide less efficient results when compared to Binary
Search. In Binary Search, the elements first have to be sorted either in ascending or descending order. The
list is divided into two equal halves The search KEY is compared with middle element of the list, if middle
element is equal to key, then either the element or its index is returned or if key is greater than middle element
then entire left sub array is ignored and only right subarray will be searched by changing variables
appropriately [1], [2]. Parveen Kumar [5] proposed Quadratic Search: A New and Fast Searching Algorithm,
in which the middle element, 1/4th of the element and 3/4th of the element has to be calculated. Then, the
search key is compared with mid value, if it matches, then it is returned or else the same process continued.
The main disadvantages of this approach are, there is a need of maintaining multiple pointers inside the
binary search algorithm and it increases overhead in calculating complex calculations. The main
disadvantage of all these algorithms is, even though the search key is ODD, the searching is done for EVEN
numbers. Similarly, if the search key is EVEN searching is done for ODD numbers. Thereby, it increases
running time of an algorithm, delay in searching and wastage of computer resources.

3. ODD EVEN BASED BINARY SEARCH ALGORITHM
Generally, the list of elements are combination of odd numbers and even numbers. In Binary Search
whenever the search KEY is given, either the recursive method or iterative method of searching initiated.
But, even though the given KEY is odd, searching is done for even numbers. If given KEY is even, searching
is done for odd numbers. In the proposed method, whenever the KEY is given, first the KEY is determined
whether it is odd or even. If given KEY is odd, then only odd numbers from the list is searched by completely
ignoring list of even numbers. If given KEY is even, then only even numbers from the list is searched by
completely ignoring list of odd numbers. The sorted list is given as an input to Odd Even Based Search
Algorithm and it returns the list containing odd and even values either in ascending or descending order with
appropriate variables pointing to its corresponding index. The proposed method provides efficient results by
reducing time complexity and minimizing the usage of computer resources when the list contains
combination of even and odd numbers. If the list contains completely even or odd numbers, this algorithm
takes same time as in case of Binary Search. Since, integers can represent string of characters like names or
dates and specially formatted floating point numbers [4], so Odd Even Based Binary Search is not limited to
integers.

Karthick S

http://www.iaeme.com/IJCET/index.asp 42 editor@iaeme.com

3.1. ALGORITHM
Odd_Even_Based_Search (list[], N, count_odd, count_even)

Purpose : To classify sorted elements into list of odd numbers and even numbers.

Input : list[0...N-1] - the list of sorted elements

: N - the number of elements in the list

: count_odd - the count of odd numbers in the list

: count_even - the count of even numbers in the list

Output : A[0…N-1] - the list of classified elements

: odd_lb - the lower bound index of odd numbers

: odd_ub - the upper bound index of odd numbers

: even_lb - the lower bound index of even numbers

: even_ub - the upper bound index of even numbers

Step 1 : [Check whether the list contains combination of even numbers and odd numbers]

If count_odd = 0 OR count_even = 0 then

Print “Odd Even Based Search is not applicable.”

 Goto Step 5

Endif

Step 2 : [Initialize the variables]

temp_odd � – 1

temp_even � N – count_even – 1

odd_lb � temp_odd + 1

odd_ub � count_odd – 1

even_lb � temp_even + 1

even_ub � N – 1

Step 3 : Repeat Step 4 for i � 0 to N – 1

Step 4 : [Classifying each element into odd or even and storing it based on its index]

If (list[i] MOD 2 <> 0) then

temp_odd � temp_odd + 1

A[temp_odd] � list[i]

 Else

temp_even � temp_even + 1

A[temp_even] � list[i]

 EndIf

[End of Step 4 loop]

Step 5 : Exit

Odd Even Based Binary Search

http://www.iaeme.com/IJCET/index.asp 43 editor@iaeme.com

3.2. IMPLEMENTATION OF ODD EVEN BASED SEARCH ALGORI THM
Consider a list of 7 numbers in sorted order arranged in ascending order, given as an input to Odd Even
Based Search Algorithm, along with total number of even numbers in the list and total number of odd
numbers in the list.

Table 1 Classifying elements into odd or even and storing it based on its index

Steps Actions

Initial N = 7

count_odd = 4

count_even = 3

list[]:

 0 1 2 3 4 5 6

10 23 34 47 53 66 81

I. count_odd != 0 OR count_even != 0

II. Initialize

 temp_odd = -1

temp_even = 7-3-1 = 3

odd_lb = -1 + 1 = 0

odd_ub = 4 – 1 = 3

even_lb = 3 + 1 = 4

even_ub = 7 – 1 = 6

A[]:

 0 1 2 3 4 5 6

 � � � �

 odd_lb odd_ub even_lb even_ub

 -1 0 1 2 3 4 5 6

×

 � �

 odd_lb temp_even

III. Repeat Step 4 for i = 0 to 6

IV. i=0

if(10%2==0) then

 temp_even++

A[temp_even] = list[i]

A[]:

 0 1 2 3 4 5 6

 10

 �

 temp_even

i=1

if(23%2!=0) then

 temp_odd++

A[temp_odd] = list[i]

A[]:

 0 1 2 3 4 5 6

23 10

 � �

 temp_odd temp_even

Karthick S

http://www.iaeme.com/IJCET/index.asp 44 editor@iaeme.com

i=2

if(34%2==0) then

 temp_even++

A[temp_even] = list[i]

A[]:

 0 1 2 3 4 5 6

23 10 34

 � �

 temp_odd temp_even

i=3

if(47%2!=0) then

 temp_odd++

A[temp_odd] = list[i]

A[]:

 0 1 2 3 4 5 6

23 47 10 34

 � �

 temp_odd temp_even

i=4

if(53%2!=0) then

 temp_odd++

A[temp_odd] = list[i]

A[]:

 0 1 2 3 4 5 6

23 47 53 10 34

 � �

 temp_odd temp_even

i=5

if(66%2==0) then

 temp_even++

A[temp_even] = list[i]

A[]:

 0 1 2 3 4 5 6

23 47 53 10 34 66

 � �

 temp_odd temp_even

i=6

if(81%2!=0) then

 temp_odd++

A[temp_odd] = list[i]

A[]:

 0 1 2 3 4 5 6

23 47 53 81 10 34 66

 � �

 temp_odd temp_even

V. Exit

Final

Result

A[]:

 � � � �

 odd_lb odd_ub even_lb even_ub

23 47 53 81 10 34 66

Odd Even Based Binary Search

http://www.iaeme.com/IJCET/index.asp 45 editor@iaeme.com

From the index odd_lb to odd_ub, all the odd elements are arranged in the ascending order. From the
index even_lb to even_ub, all the even elements are arranged in the ascending order. When searching KEY
is given, if KEY is odd then the function call is BinarySearch (A,KEY,odd_lb,odd_ub), only the elements
within odd_lb and odd_ub range is given, the remaining elements are completely ignored. Similarly, if KEY
is even then the function call is BinarySearch (A,KEY,even_lb,even_ub), only the elements within even_lb
and even_ub range is given, the remaining elements are completely ignored. Thereby it reduces total number
of function calls, time complexity and other computing resources.

For example, consider search KEY given is 34. In Odd Even Based Binary Search, first whether the KEY
is odd or even will be determined. Based on that, the appropriate variables are given in the function call.

Table 2 Find Key 34

Search Key = 34

Steps Binary Search Odd Even Based Binary Search

Input

list[]:

 0 1 2 3 4 5 6

10 23 34 47 53 66 81

 � �

 lb ub

A[]:

 0 1 2 3 4 5 6

23 47 53 81 10 34 66

 � � � �

odd_lb odd_ub even_lb even_ub

Initial

lb=0 ub=6

if(34%2==0) then

 even_lb=4

 even_ub=6

Function

Call

BinarySearch

(list,key,lb,ub)

BinarySearch

(A,key,even_lb,even_ub)

1

lb=0 mid=3 ub=6

list[]:

 0 1 2 3 4 5 6

10 23 34 47 53 66 81

 � � �

 lb mid ub

lb=4 mid=5 ub=6

A[]:

 0 1 2 3 4 5 6

23 47 53 81 10 34 66

 � � �

 lb mid ub

2

lb=0 mid=1 ub=2

list[]:

 0 1 2 3 4 5 6

10 23 34 47 53 66 81

 � � �

 lb mid ub

Karthick S

http://www.iaeme.com/IJCET/index.asp 46 editor@iaeme.com

3

lb=2 mid=2 ub=2

list[]:

 0 1 2 3 4 5 6

10 23 34 47 53 66 81

 ���

 lb,mid,ub

Total
Function

Calls

3

1

Result Element Found Element Found

In classical binary search, to find KEY 34, the total number of function calls required are 3. But, using

Odd Even Based Binary Search Algorithm, the total number of function calls reduced from 3 to 1. It leads
to best case time complexity.

Table 3. Find Key 27

Search Key = 27

Steps Binary Search Odd Even Based Binary Search

Input

list[] :

 0 1 2 3 4 5 6

10 23 34 47 53 66 81

 � �

 lb ub

A[] :

 0 1 2 3 4 5 6

23 47 53 81 10 34 66

 � � � �

odd_lb odd_ub even_lb even_ub

Initial

lb=0 ub=6

if(27%2!=0) then

 odd_lb=0

 odd_ub=3

Function

Call

BinarySearch

(list,key,lb,ub)

BinarySearch

(A,key,odd_lb,odd_ub)

1

lb=0 mid=3 ub=6

list[]:

 0 1 2 3 4 5 6

10 23 34 47 53 66 81

 � � �

 lb mid ub

lb=0 mid=1 ub=3

A[]:

 0 1 2 3 4 5 6

23 47 53 81 10 34 66

 � � �

 lb mid ub

Odd Even Based Binary Search

http://www.iaeme.com/IJCET/index.asp 47 editor@iaeme.com

2

lb=0 mid=1 ub=2

list[]:

 0 1 2 3 4 5 6

10 23 34 47 53 66 81

 � � �

 lb mid ub

lb=0 mid=0 ub=0

A[] :

 0 1 2 3 4 5 6

23 47 53 81 10 34 66

� � �

lb,mid,ub

3

lb=2 mid=2 ub=2

list[] :

 0 1 2 3 4 5 6

10 23 34 47 53 66 81

 ���

 lb,mid,ub

lb=1 ub=0

A[] :

 0 1 2 3 4 5 6

 23 47 53 81 10 34 66

 � � �

ub,mid lb

if(ub<lb) then

 Exit

4

lb=2 ub=1

list[] :

 0 1 2 3 4 5 6

10 23 34 47 53 66 81

 � � �

 ub mid,lb

 if(ub<lb) then

 Exit

Total
Function

Calls

4

3

Result Element Not Found Element Not Found

In classical binary search, to find KEY 27 which is not present in the list, the total number of function
calls required are 4. But, using Odd Even Based Binary Search Algorithm, the total number of function calls
reduced from 4 to 3. It leads to average case time complexity.

4. PERFORMANCE ANALYSIS OF ODD EVEN BASED BINARY SEARCH
The time complexity of binary search algorithm in worst case is O (log2N). By using, Odd Even Based
Binary Search algorithm the time complexity reduced to O (log (N-M)) where M is total number of even
numbers if KEY is ODD or total number of odd numbers if KEY is EVEN. Therefore, ODD EVEN BASED
BINARY SEARCH ALGORITHM provides better results, if a list has combination of even and odd
numbers. The performance of Odd Even Based Binary Search and classical Binary Search were tested and

Karthick S

http://www.iaeme.com/IJCET/index.asp 48 editor@iaeme.com

implemented in MATLAB Version 7.10.0.499 (R2010a) for various input lengths 5000, 10000, 15000,
20000, 25000 and 30000. Both the searching algorithms are executed on machine with 64 bit Operating
System, Intel® Core i5-3210M CPU @ 2.50GHz, 2.50GHz installed memory (RAM) of 4GB. The running
time of an algorithm is measured by using Matlab Profiler. Profiler is used to measure total running time
taken by the algorithm, total number of function calls, total number of times particular line(s) of code has
been executed [6].

Table 4 CPU time for different lengths of input sequences

Key Number of input
elements

Binary Search
(Running Time in
µs)

Odd Even Based
Search (Running
Time in µs)

22491 5000 5 0
66600 10000 6 4
133191 15000 16 5
139986 20000 9 5
3501 25000 9 2
16866 30000 9 2

Figure 1 CPU time taken for different input lengths

Table 5 Function calls to find the key in different length of input sequences

Key Number of input
elements

Binary Search (No
of function calls)

Odd Even Based
Search (No of
function calls)

22491 5000 13 1
66600 10000 14 9
133191 15000 14 11
139986 20000 15 11
3501 25000 14 6
16866 30000 15 4

Odd Even Based Binary Search

http://www.iaeme.com/IJCET/index.asp 49 editor@iaeme.com

Figure 2 Number of Function calls for different input lengths

4.1. TEST RESULTS
Consider an ordered array consisting of N elements (N = 5000 / 10000 / 15000 / 20000 / 25000 / 30000) and
the values stored in the array are uniformly distributed with the difference of 9. Thereafter both the searching
algorithms namely, Binary Search and Odd Even Based Binary Search are applied. The performance
measured using MATLAB Profiler and results are shown below.

Table 6 Test results with profile summary for various input length sequences

Type Array

Key

22491

Binary
Search

lb

1

ub

5000

list[]:

 1 2 2500 2501 4999 5000

9 18 … 22500 22509 ... 44991 45000

 � �

 lb ub

Figure 3. Profile summary to find key 22491 in Binary Search

Karthick S

http://www.iaeme.com/IJCET/index.asp 50 editor@iaeme.com

Odd
Even
Based
Binary
Search

lb

1

ub

2500

Key

66600

Binary
Search

lb

1

ub

10000

a[]:

 1 2 2500 2501 4999 5000

9 27 … 44991 18 ... 44982 45000

 � � � �

 odd_lb odd_ub even_lb even_ub

Figure 4. Profile summary to find key 22491 in Odd Even Based

Binary Search

list[]:

 1 2 5000 5001 9999 10000

9 18 … 45000 45009 ... 89991 90000

 � �

 lb ub

Figure 5. Profile summary to find key 66600 in Binary Search

Odd Even Based Binary Search

http://www.iaeme.com/IJCET/index.asp 51 editor@iaeme.com

Odd
Even
Based
Binary
Search

lb

5001

ub

10000

a[]:

 1 2 5000 5001 9999 10000

9 27 … 89991 18 ... 88982 90000

 � � � �

 odd_lb odd_ub even_lb even_ub

Figure 6. Profile summary to find key 66600 in Odd Even Based

Binary Search

Key

133191

Binary
Search

lb

1

ub

15000

list[]:

 1 2 7500 7501 14999 15000

9 18 … 67500 67509 ... 134991 135000

 � �

 lb ub

Figure 7. Profile summary to find key 133191 in Binary Search

Karthick S

http://www.iaeme.com/IJCET/index.asp 52 editor@iaeme.com

Odd
Even
Based
Binary
Search

lb

1

ub

7500

a[]:

 1 2 7500 7501 14999 15000

9 27 … 134991 18 ... 134982 135000

 � � � �

 odd_lb odd_ub even_lb even_ub

Figure 8. Profile summary to find key 133191 in Odd Even Based

Binary Search

Key

139986

Binary
Search

lb

1

ub

20000

list[]:

 1 2 10000 10001 19999 20000

9 18 … 90000 90009 ... 179991 180000

 � �

 lb ub

Figure 9. Profile summary to find key 139986 in Binary Search

Odd Even Based Binary Search

http://www.iaeme.com/IJCET/index.asp 53 editor@iaeme.com

Odd
Even
Based
Binary
Search

lb

10001

ub

20000

a[]:

 1 2 10000 10001 19999 20000

9 27 … 179991 18 ... 179982 180000

 � � � �

 odd_lb odd_ub even_lb even_ub

Figure 10. Profile summary to find key 139986 in Odd Even Based

Binary Search

Key

3501

Binary
Search

lb

1

ub

25000

list[]:

 1 2 12500 12501 24999 25000

9 18 … 112500 112509 ... 224991 225000

 � �

 lb ub

Figure 11. Profile summary to find key 3501 in Binary Search

Karthick S

http://www.iaeme.com/IJCET/index.asp 54 editor@iaeme.com

Odd
Even
Based
Binary
Search

lb

1

ub

12500

a[]:

 1 2 12500 12501 24999 25000

9 27 … 224991 18 ... 224982 225000

 � � � �

 odd_lb odd_ub even_lb even_ub

Figure 12. Profile summary to find key 3501 in Odd Even Based

Binary Search

Key

16866

Binary
Search

lb

1

ub

30000

list[]:

 1 2 15000 15001 29999 30000

9 18 … 135000 135009 ... 269991 270000

 � �

 lb ub

Figure 13. Profile summary to find key 16866 in Binary Search

Odd Even Based Binary Search

http://www.iaeme.com/IJCET/index.asp 55 editor@iaeme.com

Odd
Even
Based
Binary
Search

lb

15001

ub

30000

a[]:

 1 2 15000 15001 29999 30000

9 27 … 269991 18 ... 269982 270000

 � � � �

 odd_lb odd_ub even_lb even_ub

Figure 14. Profile summary to find key 16866 in Odd Even Based

Binary Search

5. CONCLUSION
Reducing the running time of any searching algorithms provide better results and it also helps to retrieve the
information quickly once the user submits the query. In this paper, a new algorithm is proposed and it
provides better result than the existing algorithm. The performance graphs, test results and function calls
clearly show Odd Even Based Binary Search Algorithm is better than classical Binary Search Algorithm.

ACKNOWLEDGEMENTS
I would like to express sincere gratitude to Prof. Joy Paulose, H.O.D the Department of Computer Science
Christ University, the Coordinator Dr. Rohini V. and Prof. Sumitra Binu for their valuable support,
encouragement and suggestions during the research work.

REFERENCES
[1] Chitra Ravi, Data Structures Using C. (Bangalore, Subhas Publishers, 2013).

[2] J. P. Tremblay and P. G. Sorenson, An introduction to data structures with applications (New
York, McGraw-Hill, 1976).

[3] N. Arora, G. Bhasin, and N. Sharma, Two way linear search algorithm, International Journal of
Computer Applications, 107(21), 2014, 6-8.

[4] Alwin Francis and Rajesh Ramachandran, Modulo Ten Search- An Alternative to Linear Search,
Proc. 2nd IEEE Conf. on Process Automation, Control and Computing, Coimbatore, TamilNadu,
2011, 1-4.

[5] P. Kumar, Quadratic search: A new and fast searching algorithm (an extension of classical binary
search strategy), International Journal of Computer Applications, 65(14), 2013, 43–46.

[6] Profile, "Profile to improve performance," 1994. [Online]. Available:
http://in.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html.

