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ABSTRACT 

This paper proposes a composite-norm Proportionate Normalized Minimum Error 

Entropy (CN-PNMEE) algorithm for clump sparse channel estimation. The proposed 

algorithm imposes a hybrid     -norm onto channel coefficients to contemplate the 

clump sparse feature of the channel.  The proposed CN-PNMEE algorithms is 

developed and studied in detail. Further, the simulations are carried out to prove the 

efficacy of the proposed algorithm. The exploratory results show that the developed 

algorithm is superior to existing normalized minimum error entropy (NMEE), 

Proportionate Normalized Minimum Error Entropy (PNMEE), zero attracting 

minimum error entropy (ZA-MEE) and residual zero attracting minimum error 

entropy (RZA-MEE) algorithms for clump sparse channel in the presence of heavy 

tailed impulsive observation noise. 
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1. INTRODUCTION 

Channel estimation is the vital paradigm of adaptive filtering which finds its uses in several 

applications for instances; echo cancellation, satellite communication, under water acoustic 

channel estimation, wireless multipath propagation [1-4]. Mean square criterion based 
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normalized least mean square (NLMS) and its variants are most known adaptive algorithms 

due to ease in developing and simple structures. These conventional MSE based algorithms 

use second order statistics of error in developing, hence are preferred for Gaussian noise 

consideration [5]. 

However, Gaussian noise consideration does not exist in some situations, and then a 

higher order statistics based adaptive filtering algorithms are considered [6]. Information 

theoretical learning considers higher order principle in developing algorithms. Some of 

information theory based criterions are: maximum correntropy, minimum error entropy [6]. 

Maximum correntropy criterion based adaptive algorithm is optimal for lightly tailed non-

Gaussian noise, but Minimum error entropy is well known for heavy tailed impulsive noise 

[7]. The basic idea of MEE is to extract from data as much information as possible about the 

unknown systems by minimizing the entropy of error between unknown system output and 

estimated output [8]. This improves the estimation performance of the system. Further, 

normalized minimum error entropy (NMEE) algorithm was developed to improve the stability 

of algorithm due to extent of input signal [9].  

In practice, channel are sparse i.e. most of the coefficients are zero or tend to zero and 

only few have significant contribution. For example, echo channel, satellite channel, HDTV 

channel are sparse [10]. The estimation behavior of conventional adaptive algorithm can be 

further improved by taking into account the prior information of sparseness characteristics of 

the unknown system. The one such algorithm is proportionate LMS (PNLMS) developed by 

D.L. Duttweiler which improves the estimation behavior by incorporating an individual gain 

on step size for each coefficient proportional to its magnitude [11]. Larger gains are 

introduced for dominant coefficients and smaller for negligible coefficients. Therefore, the 

convergence speed of significant coefficient increases on earlier stage but it is slower down 

for negligible coefficients at later stage. Moreover, the performance of PNLMS degrades 

when the system is less sparse. After that, several enhanced PNLMS type algorithms such as 

µ-law PNLMS (MPNLMS), improved PNLMS (IPNLMS) have been proposed to further 

improve the performance [12-13]. Based on compressive sensing, several sparsity awared 

LMS algorithms such as zero-attracting LMS (ZA-LMS), residual zero attracting LMS (RZA-

LMS) have been developed for sparse system identification [14]. Under the same concept of 

sparse penalty, zero attracting MEE, RZA MEE algorithms are invented for sparse channel 

estimation problems [15]. These algorithms work well for common sparse system into which 

the dominant coefficients are wide spread along the channel not into clumps.  But these 

algorithms do not perform well for clump sparse system.  

 

Figure 1 Different types of sparse channel 
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Based on the arrangement of significant coefficients, the sparse channel can be divided 

into common sparse channel, single clump sparse channel and multi clump sparse channel.   

However, the network echo path comes under the category of one clump sparse channel 

owing to distribution of significant coefficients into a chunk and the echo path of satellite 

communication falls under multiple clump sparse channel due to huge amount of packet delay 

variation, and loading and encoding in networking [16]. To consider the multi clump sparse 

channel, block sparse LMS algorithm was invented by adding hybrid l2,0 in to cost function of 

conventional LMS algorithm [17]. Further, several group sparse adaptive algorithms have 

been developed by incorporating mixed-norm constraint on to channel coefficients to improve 

the performance in multi clump sparse channel [18-20]. 

In this work, a composite norm proportionate normalized MEE based adaptive algorithm 

is developed for clump sparse channel. The composite norm considers the prior information 

about the arrangement of dominant coefficients into single clump or multi clump. The 

proposed CN-PNMEE is developed by incorporating composite l2,1  into cost function of 

PNMEE algorithm. Thereafter, simulations are performed to prove the credibleness of 

proposed algorithm for clump sparse channel in the presence of impulsive observation noise. 

The rest of the paper is organized as follows. In Section 2, reviews the Renyi’s Entropy and 

section 3 derives PNMEE algorithm. In Section 4, we derive the proposed CN- PNMEE 

algorithm. In Section 5, simulation results are carried out to excel the performance of the 

proposed algorithm. Finally, In Section 6, conclusion is drawn. 

2. RENYI’S ENTROPY  

Entropy measures the amount of information from available data samples of random variable. 

Consider X as random variable and f(x) as its probability density function (pdf), the quadratic 

entropy (Renyi’s entropy) of random variable X can be written as [8]: 

 

   =       ∫   (   d            (1) 

 

Due the lack of available data samples of random variable X in practice, an estimation of 

f(X) from available samples is considered using Parzen window [9]. Hence, the estimation of 

pdf can be written as: 

 

 ̂(X) = 
 

 
 ∑    

 
   (X-X(j))                                  (2) 

 

Where, N is number of available samples and     is kernel function having bandwidth  . 

The most popular kernel used is Gaussian kernel defined as: 
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So we can write estimated Renyi’s entropy  ̂  as : 
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where S(X) = 
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   ), is defined as information potential. 
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3. PROPORTIONATE NORMALIZED MINIMUM ERROR ENTROPY 

(PNMEE) 

Consider x(n)= [x(n) x(n-1) x(n-2) …………x(n-M+1)]
T
 as input to both unknown channel 

and adaptive filter. Considering      [                           ]
  as unknown 

channel impulse response, we can write the reference output of unidentified channel as: 

 

                                (5)   

 

where v(n) is measurement noise with zero mean and variance   
  which is independent of 

input x(n). Now the output of adaptive filter with  ̂(n) as estimated impulse response can be 

written as: 

 

             ̂(n-1)                                        (6)                  

 

The instantaneous estimation error     is represented as: 

 

                      (7)                 

 

The PNMEE algorithm just like PNLMS uses a posteriori error based cost function. The 

aim of PNMEE is to minimize the entropy of a posteriori error                  ̂   . 

The estimated Renyi’s entropy  ̂  can be represented as [8] : 

 

 ̂  =       
 

    ∑ ∑                  
 
   

 
   ) =               (8) 

 

Where   ( 𝒑)  
 

  
∑ ∑                  

 
   

 
   ), is defined as information 

potential .Thus, it is clear that the objective of PNMEE principle is to minimize error entropy 

which is equivalent to maximizing information potential and    = [   (1),    (2), … ,    (N)]  

As it is clear that S(0)≥         , hence the cost function of  PNMEE can be written as [9]: 

Therefore, the cost function of PNMEE becomes: 

      ( ̂)  ‖ ̂     ̂     ‖
        

 
 λ (        S(0))  (9) 

We can write as: 

      ( ̂)  (  ̂     ̂      )
 
          (  ̂     ̂      )  λ(         S(0))  

           (10) 

 

where G(n) is a gain control matrix that manages the step size for each coefficient.  
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           ( ̂     ̂     )                 (11) 
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       ( ̂)

  
          S(0)       (12)     

By putting 
       ( ̂)
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Hence the weight update equation of PNMEE becomes: 

 

 ̂     ̂       
                   

[         ]
 
                  

    (16)                           

 

where   is the step size to control change in each iteration and        is regularizer to 

prevent the overflow of division by zero; and G(n-1)  is the  diagonal matrix of dimension 

MXM ,which controls the step size can be written  as: 

G(n-1)=diag{                           }     (17)      

 

The elements of control matrix G(n) in this algorithm can be written  as: 

 

      
     

∑         
   

                     (18)  

     =max [ρ × max (q,| ̂0| ,| ̂1|,…..,| ̂ M-1|) ,| ̂ℓ|]               (19)       

With ℓ=0,1,…, M-1 

The parameter  ρ helps the coefficients to be in consideration even when their value is 

much smaller than the highest coefficient and parameter q  helps  the coefficients to be in 

consideration  even when  ̂ℓ  is at initial stage i.e.  ̂ℓ (0)=0.   

4. PROPOSED COMPOSITE NORM PNMEE (CN-PNMEE) 

ALGORITHM 

To consider the clump sparseness characteristics of channel, CN-PNMEE algorithm is 

proposed. The proposed algorithm is developed by adding composite      norm to cost 

function of PNMEE algorithm. 

 

The cost function of CN-PNMEE algorithm can be written as: 

         ( ̂)  ‖ ̂     ̂     ‖
            

 
 λ (         S(0))  (20)  

Under limiting condition of norm, the above cost function becomes: 
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Where C is number of clumps and procured by dividing total number of coefficients M of 

unknown system by number of coefficients L present in each clump i.e. C=M/L and  || x||1  

denotes ℓ1 –norm . 
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Considering jth coefficient is allied to rth clump of system response, hence we let: 
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Using Lagrange Multiplier method 
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We get 

 

          ( ̂)

  ̂   
          [ 

 ̂   

‖ ̂ ‖
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Pre-multiplying both sides of (36) by G(n-1), we let: 
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Pre multiplying (31) both sides by      , we have 

[       
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 and from (29), we have: 
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Therefore,       

        

            ̂         

            ̂     
         (35)

 
 

 

Hence, from (33) and  (35), we have: 

 

      ‖ ̂ ‖  
                          (36)                   
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         (37)       

 

Herein, the diagonal matrix G(n-1) is described as: 

G(n -1) =diag {        1L,        1L, · · · ,        ) 1L}   (38)   

      
     

∑       
   

                      (39)      

     =max [ρ × max (q,     ̂ ,     ̂ , …,     ̂   ,     ̂ ]        (40)        

 

Where     ̂  ‖ ̂    ‖         (41) 
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Hence, the new update equation becomes:        

 ̂     ̂       
                    

             (     ) 
      (42) 

Further a regularizer,             is added in the denominator of (42) to prevent the overflow 

due to division by zero. 

 ̂     ̂       
                    

             (     )           
      (43)  

However, a posteriori error       is replaced by a priori error e(n) to reduce the 

computational complexity. 

Therefore, (43) can be written as: 

 ̂     ̂       
                    

             (    )           
     (44)      

5. SIMULATION RESULTS 

In the above section, we have derived the CN-PNMEE algorithm that takes into account the 

clump sparsity form of the channel by using ℓ2,1 norm on coefficients. Further, the 

performance of proposed CN-PNMEE algorithm is verified by conducting several 

experiments and is compared to NMEE, PNMEE, ZA-MEE, RZA-MEE algorithms.  

In all experiments, the length of channel is L=1024. The unknown channel length and 

adaptive filter length are considered to be same. The simulations are carried out considering 

three types of input signal. 

 Gaussian Input 

 Colored Input 

 Speech signal 

The colored input is generated by passing Gaussian input through AR process whose 

transfer function,      
 

        . The sampling frequency of speech signal is taken 8 Khz. 

The measurement noise is considered as impulsive. It is taken as alpha stable distribution 

V(         i.e. [20]. We have taken measurement noise as:  V(            .  

The regularizer constants            and                   
 

 
       are taken 

in all simulations. The kernel width       is adopted here. 

To consider the clump sparsity, first we have consider one clump channel and then two 

clump channel is taken for simulation purpose. In figure 1, in one clump channel, the 

dominant coefficients are in dispersed in (241, 256) and in second type of channel, the active 

coefficients are in (241, 256) and (801, 816). 

In the first experiment, we demonstrate the consequence of clump size L=[4, 

8,16,32,64,128] on the tracking behavior of CN-PNMEE algorithm. The channel is 

considered single clump and the input noise is taken as Gaussian. As the clump size M 

increases from 8 to 16, the estimation performance improves after that it starts deteriorating. 

The regularizer constants            and                   
 

 
       are taken in 

all simulations. The kernel width       is adopted here. The step sizes considered here 

are:                     ,          ,                     . Fig.1 shows 

the consequence of clump size M on the performance of CN-PNMEE algorithm for colored 

input and two clumps sparse channel. The convergence speed and NMSD for L=16 is superior 

to other values of M. 
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Figure 2 Consequence of clump size L on the tracking behavior of CN-PNMEE 

In the next experiment, we compare the estimation performance with NMEE, PNMEE, 

ZA-MEE, RZA-MEE algorithms for different types of input. 

For each type of input, we have considered both single clump channel and two clumps 

channel. The other parameters are adopted same as in figure 2. 

Figs. 3(a), 3(b) and 3(c) show the estimation performance for Gaussian, colored and 

Speech input signals. It is obvious form fig 3 that the proposed algorithm is robust against any 

type of input and excels for both single clump and double clump sparse channel estimation. 

 

Figure 3(a) Comparison of tracking behavior of CN-PNMEE algorithm with cited algorithms for 

Gaussian input 

From figs. 3(a), 3(b) and 3(c), it is clear that the proposed CN-PNMEE algorithm perform 

better than other mentioned algorithms for every input in case of both single and double 

clump channels. However, the performance is superior for L=16 and worst for L=128. 
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Figure 3(b) Comparison of tracking behavior of CN-PNMEE algorithm with cited algorithms for 

Colored input 

 

Figure 3(c) Comparison of tracking behavior of CN-PNMEE algorithm with cited algorithms for 

Speech input signal 

In the next experiment, we compare the performance of proposed CN-PNMEE with l2,0-

PNLMS and mixed norm constrained proportionate normalized least mean fourth  (MNC-

PNLMF) algorithms for L=16, C=2 and colored input. First we have taken Gaussian 

observation noise and then the simulations are performed for alpha stable noise. For Gaussian 

observation noise, the SNR=20 dB is considered. The step size µ=0.01, µ=0.2 and µ=0.3 are 

taken for MNC-PNLMF, l2,0-PNLMS, CN-PNMEE algorithms respectively for Gaussian 

observation noise. The other parameters are same as in above experiments.  

From figure 4(a), the performance of the proposed CN-PNMEE algorithm is better than 

other cited algorithms for Gaussian observation noise. 

However, MNC-PNLMF l2,0-PNLMS algorithms do not converge for alpha stable 

observation noise. From figure 4 (b), it is clear the proposed CN-PNMEE algorithm perform 

better than other mentioned algorithms for heavy tail impulsive noise. 
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Figure 4(a) Comparison of the performance of proposed CN-PNMEE with l2,0-PNLMS and mixed 

norm constrained proportionate normalized least mean fourth  (MNC-PNLMF) algorithms in the 

presence of Gaussian observation noise 

 

Figure 4(b) Comparison of the performance of proposed CN-PNMEE with l2,0-PNLMS and mixed 

norm constrained proportionate normalized least mean fourth  (MNC-PNLMF) algorithms in the 

presence of alpha stable observation noise 

6. CONCLUSION 

A new composite norm proportionate normalized minimum error entropy (CN-PNMEE) 

algorithm has been developed and investigated for clump sparse channel estimation paradigm. 

The proposed algorithm is established by incorporating l2,1 norm into cost function of PNMEE 

algorithm  to positively exploit the clump sparse information of channel which is available in 

advance. The performance of the proposed algorithm is tested for different types of input 

signal. However, the proposed algorithm excels in clump sparse channel in the presence of 

heavy tailed impulsive noise. 
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