NORMALIZATION IN A FUZZY RELATIONAL DATABASE MODEL

*JAYDEV MISHRA
College of Engineering and Management, Kolaghat, West Bengal, India. Pin: 721171. ism02@rediffmail.com,
&
SHARMISTHA GHOSH
Vellore Institute of Technology University, Vellore, Tamilnadu, India. Pin: 632014. sharmistaghosh@vit.ac.in
*Corresponding Author

ABSTRACT

Fuzzy relational database models generalize the classical relational database model by allowing uncertain and imprecise information to be represented and manipulated. In this paper, we introduced fuzzy extensions of the normal forms for similarity based fuzzy relational database model. First of all we have designed an algorithm to find the fuzzy closure of attribute set which can be utilized to find fuzzy key. Next, with the concepts of α-ffd, partial α-ffd as in [1], we have defined different fuzzy normal forms in fuzzy relational database. We also include real life application to show how normalization based on α-ffds of fuzzy relation is done.

KEYWORDS

α-ffd, partial α-ffd, fuzzy key, fuzzy closure of attribute set, fuzzy normal forms.

1. INTRODUCTION

It is well known that the classical relational data model introduced by Codd [2] in 1970 can handle only precise and exact data in an information source. However, information obtained from real life applications is more often imprecise and ambiguous. Fuzzy database models [3-24] based on the fuzzy set theory proposed by Zadeh [25] in 1965 have been extensively studied and cultivated in literature to deal with such uncertain and fuzzy information in relational databases.

One of the primary purposes of any databases is to decrease data redundancy and to provide data consistency. Data redundancies and insertion, deletion and update anomalies have also been of great concern in relational database. Like integrity constraints normalization process also plays an important role in designing a good relational database. Studies related to
normalization process minimizing redundancies and different anomalies for fuzzy relational model are accounted in [18-24].

In this chapter, our objective is to design a fuzzy relational database model by minimizing redundancies and also minimizing the insertion, deletion and update anomalies. For this first of all fuzzy closure of attribute set is presented to find fuzzy key. Next, we have introduced a number fuzzy normal forms such as fuzzy first (F1NF), fuzzy second (F2NF), fuzzy third (F3NF) and fuzzy BCNF (FBCNF) based on ffds. Finally, all these concepts are verified with an example.

The organization of the paper is as follows: The basics of fuzzy set theory have been reviewed in the following section 2. In section 3, we proposed an algorithm to find fuzzy closure of attribute set. Section 4 discusses different fuzzy normalization techniques, namely F1NF, F2NF, F3NF, and FBCNF of a fuzzy relational database model by giving a real-life application. The final conclusions are reported in section 5.

2. BASIC DEFINITIONS

In this section, we first review some basic definitions from fuzzy set theory that will be useful throughout the paper and then define fuzzy functional dependency as introduced (\(\alpha\)-ffd) in [5] and revisit the basic propositions related to \(\alpha\)-ffd.

2.1 Basic Preliminaries on Fuzzy Set Theory

Fuzzy set theory, introduces by Zadeh [25] in 1965 has been widely used in the areas where we have to deal with imprecise or ambiguous data. Fuzzy set theory is a generalization of a crisp set theory. In this section we will explain some basic definitions on fuzzy set theory. Let \(U\) be a classical set of elements, called the universe of discourse. An elements of \(U\) is denoted by \(u\).

Definition 2.1.1

A fuzzy set \(F\) in a universe of discourse \(U\) is characterized by a membership function \(\mu_F : U \rightarrow [0,1]\) and \(F\) is defined as the set of ordered pairs \(F = \{(u, \mu_F (u)) : u \in U\}\), where \(\mu_F (u)\) for each \(u \in U\) denotes the grade of membership of \(u\) in the fuzzy set \(F\).

Note that a classical subset \(A\) of \(U\) can be viewed as a fuzzy subset with membership function \(\mu_A\) taken binary values, i.e.,

\(\mu_A = 1\) if \(u \in A\)
\(\mu_A = 0\) if \(u \notin A\)

The usual set theory operations such as union, intersection and complementation etc., have been extended to deal with fuzzy sets.

Definition 2.1.2

If \(A\) and \(B\) be two fuzzy sets of the universe of discourse \(U\), then the fuzzy union of \(A\) and \(B\) is denoted by \(A \cup_B\) and is defined as \(A \cup_B = \{x, \max\{\mu_A (u), \mu_B (u)\} : x \in U\}\).
Definition 2.1.3

If A and B be two fuzzy sets of the universe of discourse U, then the fuzzy intersection of A and B is denoted by ${\text{fuzzy}} A \cap B$ and is defined as $A \cap B = \{(x, \min \{\mu_A(u), \mu_B(u)\}) : x \in U\}$.

Definition 2.1.4

The complement of a fuzzy set F is denoted by F^c and is defined by the membership functions $\mu_{F^c}(u)$ as follows:

$$\mu_{F^c}(u) = 1 - \mu_F(u) \forall u \in U.$$

Definition 2.1.5

A fuzzy set F is an empty fuzzy set, denoted by ϕ, if and only if its membership function $\mu_F(u) = 0$ for all $u \in U$.

Definition 2.1.6

A fuzzy set A is contained in another fuzzy set B, written as $A \subseteq B$, if and only if, $\mu_A(u) \leq \mu_B(u) \forall u \in U$.

Definition 2.1.7

Two fuzzy sets A and B are equal, written as $A = B$, iff, $A \subseteq B$ and $B \subseteq A$, that is, $\mu_A(u) = \mu_B(u) \forall u \in U$.

Definition 2.1.8

Let $U = U_1 \times U_2 \times \cdots \times U_n$ be the Cartesian product of n universes, and $F_i, i = 1, 2, \ldots, n$ be fuzzy sets in their corresponding universes $U_i, i = 1, 2, \ldots, n$ respectively. Also, let $u_i \in U_i, i = 1, 2, \ldots, n$. Then the Cartesian product $F = F_1 \times F_2 \times \cdots \times F_n$ is defined to be a fuzzy set of $U = U_1 \times U_2 \times \cdots \times U_n$ with the membership function defined as follows:

$$\mu_F(u_1, u_2, \ldots, u_n) = \min \left(\mu_{F_1}(u_1), \mu_{F_2}(u_2), \ldots, \mu_{F_n}(u_n)\right).$$

Definition 2.1.9

Mathematically an n-ary fuzzy relation r is a fuzzy subset of the Cartesian product of n universes. Thus for given n universes U_1, U_2, \ldots, U_n, a fuzzy relation R is a fuzzy subset of $U_1 \times U_2 \times \cdots \times U_n$ and is characterized by the n-variate membership function $\mu_R : U_1 \times U_2 \times \cdots \times U_n \to [0, 1]$.

508
2.2 Fuzzy Functional Dependency:

Next, to introduce the new notion of ffd as defined in [5], we give the following definitions and terminologies. Let X be a universal set and \mathbb{R} be a fuzzy tolerance relation on X. Consider a choice parameter $\alpha \in [0,1]$ to be predefined by the database designer.

Definition 2.2.1: $(\alpha)_{\mathbb{R}}$-nearer or α-nearer elements.

Two elements $x_1, x_2 \in X$ are said to be $(\alpha)_{\mathbb{R}}$-nearer or α-nearer if $\mu_{\mathbb{R}}(x_1, x_2) \geq \alpha$. We denote this by the notation $x_1 \mathbb{R}_{(\alpha)_{\mathbb{R}}}^\alpha x_2$.

Definition 2.2.2: $(\alpha)_{\mathbb{R}}$-equality or α-equality elements.

$x_1, x_2 \in X$ are said to be $(\alpha)_{\mathbb{R}}$-equal or α-equal if
1) either $x_1 \mathbb{R}_{(\alpha)_{\mathbb{R}}}^\alpha x_2$
2) $\exists y_1, y_2, y_3, \ldots, y_{r-1}, y_r \in X$ such that
 $$\{x_1 N_{(\alpha)_{\mathbb{R}}}^\alpha y_1, y_1 N_{(\alpha)_{\mathbb{R}}}^\alpha y_2, y_2 N_{(\alpha)_{\mathbb{R}}}^\alpha y_3, \ldots, y_{r-1} N_{(\alpha)_{\mathbb{R}}}^\alpha y_r, y_r N_{(\alpha)_{\mathbb{R}}}^\alpha x_2\}$$
This equality is denoted by the notation $x_1 \mathbb{R}_{(\alpha)_{\mathbb{R}}}^\alpha E x_2$.

Definition 2.2.3: $\delta_{(\alpha)_{\mathbb{R}}}$ relation on X.

The crisp relation $\delta_{(\alpha)_{\mathbb{R}}}$ on X is defined as: For $x_1, x_2 \in X$, $x_1 \delta_{(\alpha)_{\mathbb{R}}}^\alpha x_2$ if $x_1 \mathbb{R}_{(\alpha)_{\mathbb{R}}}^\alpha x_2$.

Now, consider a relation $r(R)$ of a relation schema $R(A_1, A_2, \ldots, A_n)$. Let us assume a fuzzy tolerance relation \mathbb{R} on the domain $\text{dom}(A_i) \forall i=1,2,\ldots,n$. Let \mathbb{R} denote the set $\{\mathbb{R}_1, \mathbb{R}_2, \ldots, \mathbb{R}_n\}$ of fuzzy tolerance relations. Let $X = \{X_1, X_2, \ldots, X_k\} \subseteq R$. We now define $(\alpha)_{\mathbb{R}}$-equality of two tuples $t_1[X]$ and $t_2[X]$ in a relational database design.

Definition 2.2.4: $(\alpha)_{\mathbb{R}}$-equality of $t_1[X]$ and $t_2[X]$.

Two tuples $t_1[X]$ and $t_2[X]$ are said to be $(\alpha)_{\mathbb{R}}$-equal if $t_1[X] \mathbb{R}_{(\alpha)_{\mathbb{R}}}^\alpha E t_2[X], \forall i=1,2,\ldots,k$.

The equality notation is denoted as $t_1[X] \mathbb{R}_{(\alpha)_{\mathbb{R}}}^\alpha E t_2[X]$ or simply by $t_1[X] \mathbb{R}_{(\alpha)_{\mathbb{R}}}^\alpha E t_2[X]$.

Definition 2.2.5: Fuzzy Functional Dependency (ffd).

Let $X, Y \subseteq R = \{A_1, A_2, \ldots, A_n\}$. Choose a parameter $\alpha \in [0,1]$ and propose a fuzzy tolerance relation \mathbb{R}. A fuzzy functional dependency (ffd), denoted by $X \xrightarrow{(\alpha)_{\mathbb{R}}} Y$ or simply by $X \xrightarrow{\alpha} Y$, is said to exist, if whenever $t_1[X] \mathbb{R}_{(\alpha)_{\mathbb{R}}}^\alpha E t_2[X], \forall i=1,2,\ldots,k$.

This ffd can be read as “X fuzzy functionally determines Y at α-level of choice” or “Y fuzzy functionally depends on X at α-level of choice” and is called an α-ffd. Clearly, by definition of α-ffd, it follows that for any subset X of R and for any $\alpha \in [0,1]$, $X \xrightarrow{\alpha} Y$.
Also we have the following straightforward propositions:

Proposition 2.2.1: The relation \(\delta_{(\alpha)} \) defined on \(X \) is an equivalence relation (See ref. [1])

Proposition 2.2.2: For any tuple \(t \) and for any \(\alpha \in [0,1] \), \(t[X] \subseteq X \).

Proposition 2.2.3: If \(0 \leq \alpha_2 \leq \alpha_1 \leq 1 \), then \(t[X] \subseteq X \).

Proposition 2.2.4: If \(0 \leq \alpha_2 \leq \alpha_1 \leq 1 \), then \(\alpha \).

Proposition 2.2.5: If \(0 \leq \alpha_2 \leq \alpha_1 \leq 1 \), then \(\alpha \).

Proposition 2.2.6: The \(\text{ffd} X \rightarrow Y \Rightarrow \text{classical fd} X \rightarrow Y \).

Proposition 2.2.7: The \(\text{ffd} X \rightarrow Y \Rightarrow \text{“ X does not functionally determine Y”} \)

2.3 Inference rules for \(\alpha \)-ffd

Consider a relational schema \(R(A_1, A_2, \ldots, A_n) \) and \(X, Y, Z, W \subseteq R \), then we have the following set of inference rules similar to classical functional dependency defined for fuzzy functional dependency of a fuzzy relational database. The rules (R2.3.1) to (R2.3.3) are called fuzzy Armstrong’s axioms.

**(R2.3.1) \alpha \)-ffd reflexive rule: If \(Y \subseteq X \), then \(X \rightarrow_{\alpha} Y \).

**(R2.3.2) \alpha \)-ffd augmentation rule: If \(X \rightarrow_{\alpha} Y \), then \(XZ \rightarrow_{\alpha} YZ \).

**(R2.3.3) \alpha \)-ffd transitive rule: If \(X \rightarrow_{\alpha_1} Y \) and \(Y \rightarrow_{\alpha_2} Z \), then \(X \rightarrow_{\min(\alpha_1, \alpha_2)} Z \).

**(R2.3.4) \alpha \)-ffd decomposition rule: If \(X \rightarrow_{\alpha} YZ \), then \(X \rightarrow_{\alpha} Y \) and \(X \rightarrow_{\alpha} Z \).

**(R2.3.5) \alpha \)-ffd union rule: If \(X \rightarrow_{\alpha_1} Y \) and \(X \rightarrow_{\alpha_2} Z \), then \(X \rightarrow_{\min(\alpha_1, \alpha_2)} YZ \).

**(R2.3.6) \alpha \)-ffd pseudo transitive rule: If \(X \rightarrow_{\alpha_1} Y \) and \(WY \rightarrow_{\alpha_2} Z \), then \(WX \rightarrow_{\min(\alpha_1, \alpha_2)} Z \).

2.4 Partial fuzzy functional dependency (partial \(\alpha \)-ffd)

Partial fuzzy functional dependency (partial \(\alpha \)-ffd) for fuzzy relational database is defined below:

Definition 2.4.1

\(Y \) is called partially fuzzy functionally dependent on \(X \) at \(\alpha \)-level of choice, ie, \(X \rightarrow_{\alpha} Y \) partially, iff \(X \rightarrow_{\alpha} Y \) and there exists a non empty set \(X' \subseteq X \), such that, \(X' \rightarrow_{\alpha} Y \). The concept of partial \(\text{ffd} \) then expresses the fact that after removal of an attribute \(A \) from \(X \), the dependency still holds i.e., for an attribute \(A \in X \), \(X \rightarrow_{\alpha} Y \) still fuzzy functionally determines \(Y \) at \(\alpha \)-level of choice.

2.5 fuzzy Key

Extending the idea of classical key in the fuzzy environment we have defined fuzzy key in [1] as follows:

Definition 2.5.1
Let $K \subseteq R$ and F be a set of fffds for R. Then, K is called a fuzzy key of R at α-level of choice where $\alpha \in [0,1]$ iff $K \xrightarrow{\alpha} R \in F$ and $K \xrightarrow{\alpha} R$ is not a partial ffd.

3. FUZZY CLOSURE OF ATTRIBUTE SET

To find the fuzzy key of a relation scheme R, we should find the fuzzy closure of an attribute or set of attributes. Fuzzy closure of attribute set X denoted by X^+ is the set of attributes which are fuzzy functionally determined by the attributes X. If the closure set X^+ is the minimal set which contains all the attributes of the relation scheme R then X is called fuzzy key of the relation R. Below we explain an algorithm to find the fuzzy closure of an attribute or a set of attributes.

Algorithm 3.1: Computation of fuzzy closure of an attribute or a set of attributes.

Input: A fuzzy relational scheme R, a set of fffds F on R and an attribute or a set of attributes X.

Output: A set of attributes X^+, the fuzzy closure set of X.

Method:
Let $X^+ = X$.

i.e., $X^+ = (X, \alpha_i)$ where $\alpha_i = 1[\vdash X \xrightarrow{\alpha_i} X]$

repeat
$X^+ = X^+$.

for each ffd $Y \xrightarrow{\alpha_i} Z$ in F

do
if $Y \subseteq X^+$ then $X^+ = (X^+ \cup Z, \alpha_j)$ where $\alpha_j = \min(\alpha_i, \alpha_2)$.

$\alpha_i = \alpha_j$.
end for
until $(X^+ = X^+)$.

Example 3.1: Let $R(A,B,C,D)$ be a relational scheme and a set of fdds and fffds F on R is given as $F = \{A \xrightarrow{0.8} C, B \xrightarrow{0.75} D, C \xrightarrow{0.9} B\}$. Find closure of A.

Solution:
Let $X^+ = A$ i.e., $X^+ = (A,1)$

Repeat Case-I
$X^+ = (A,1)$

for $A \xrightarrow{0.8} C$

$X^+ = (AC, 0.8) [\vdash A \subseteq X^+]$

for $B \xrightarrow{0.75} D$

$X^+ = (AC, 0.8) [\vdash B \in X^+]$

for $C \xrightarrow{0.9} B$

$X^+ = (ABC, 0.8) [\vdash C \subseteq X^+]$
Since $X^* \neq X^+$ follow the repeat case again

Repeat Case-II

$X^* = (ABC, .8)$

For $A \xrightarrow{0.8} C$

$X^* = (ABC, .8)$ [:: $A \subseteq X^+$]

For $B \xrightarrow{0.75} D$

$X^* = (ABCD, 0.75)$ [:: $B \subseteq X^+$]

For $C \xrightarrow{0.9} B$

$X^* = (ABCD, 0.75)$ [:: $C \subseteq X^+$]

Since $X^* \neq X^+$ again perform the repeat case

Repeat Case-II

$X^* = (ABCD, 0.75)$

For $A \xrightarrow{0.8} C$

$X^* = (ABCD, 0.75)$ [:: $A \subseteq X^+$]

For $B \xrightarrow{0.75} D$

$X^* = (ABCD, 0.75)$ [:: $B \subseteq X^+$]

For $C \xrightarrow{0.9} B$

$X^* = (ABCD, 0.75)$ [:: $C \subseteq X^+$]

Repeat case will stop since $X^* = X^+$.

Hence the fuzzy closure of A i.e., $X^* = (ABCD, 0.75)$ which means $A \xrightarrow{0.75} ABCD$.

4. FUZZY NORMALIZATION

An important problem of the relational database design is how to obtain relation schemes in which the so-called storage anomalies [26-28] are avoided as much as possible. Storage anomalies occur during updating operations and cause the inconsistency of data. In order to avoid storage anomalies as much as possible, Codd [26] introduced a series of normal forms, such as first (1NF), second (2NF), third (3NF) and BCNF normal forms.

For good database design any relation must follow at least 3NF normal form but BCNF, a stricter form of 3NF is most desirable normal form from the point of view of redundancy, so in fuzzy relational database, we also discuss the normalization techniques for fuzzy relation schemes called fuzzy normalization up to fuzzy BCNF normal forms. Following we will discuss step by step different normalization forms of fuzzy relational database say, fuzzy first (F1NF), fuzzy second (F2NF), fuzzy third (F3NF) and fuzzy BCNF (FBCNF) normal forms. To discuss the above theory we consider the fuzzy relation scheme $EMP(\text{Name}, \text{City}, \text{City _Status}, \text{Experience}, \text{Salary})$ given below in Table-I with a set fds and ffds F as follows:

$F = \{\text{City} \xrightarrow{0.99} \text{City _Status}, \text{Experience} \xrightarrow{0.9} \text{Salary}, \text{NameCity} \xrightarrow{0.9} \text{Experience}\}$
Table-I: A fuzzy relational instance r of EMP relation

<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
<th>City_Status</th>
<th>Experience</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>Delhi</td>
<td>30</td>
<td>13</td>
<td>more or less 50000</td>
</tr>
<tr>
<td>David</td>
<td>Kolkata</td>
<td>20</td>
<td>13.6</td>
<td>50000</td>
</tr>
<tr>
<td>John</td>
<td>Delhi</td>
<td>around 30</td>
<td>23</td>
<td>95000</td>
</tr>
<tr>
<td>Smith</td>
<td>Mumbai</td>
<td>10</td>
<td>23</td>
<td>95050</td>
</tr>
</tbody>
</table>

The **fd** $NameCity \rightarrow Experience$ can be expressed in **ffd** as $NameCity \rightarrow_1 Experience$. So the above F set can be rewritten as follows:

\[F = \{ \text{City} \rightarrow_{0.99} \text{City_Status}, \text{Experience} \rightarrow_{0.9} \text{Salary}, NameCity \rightarrow_1 Experience \} \]

Next we have to find the fuzzy key of the relation EMP. Using Algorithm 3.1 the fuzzy closure of NameCity is obtained as

\[(NameCity)^+ = (Name City City_Status Experience Salary, 0.9) \]

which means

\[NameCity \rightarrow_0.9 Name City City_Status Experience Salary \]

So, we can say, NameCity is the fuzzy key of EMP relation at 0.9-level of choice.

4.1 Fuzzy Prime and Non-prime Attributes

To be able to state the condition for fuzzy **2NF**, it is also necessary to define fuzzy prime and non-prime attributes for a relation.

Definition 4.1.1

Let $A \subseteq R$ and K be a fuzzy key set for R. A is called fuzzy prime attributes if and only if $A \subseteq K$. Those attributes which are not fuzzy prime are called fuzzy non-prime.

For an attribute to be fuzzy prime attribute, it should be a part of at least one of the fuzzy candidate keys of the relation. Similarly, for an attribute to be a fuzzy non-prime attribute, it should not appear in any of the fuzzy candidate keys of the relations.

Example 4.1.1

Let us consider the above EMP($Name, City, City_Status, Experience, Salary$) relation and **ffd** set $F = \{ \text{City} \rightarrow_{0.99} \text{City_Status}, \text{Experience} \rightarrow_{0.9} \text{Salary}, NameCity \rightarrow Experience \}$ of Table-I.

Here NameCity is a fuzzy key at 0.9-level of choice. Therefore, we conclude that the attributes Name and City are fuzzy prime attributes at 0.9-level of choice and attributes City_Status, Experience and Salary are fuzzy non-prime attributes.

4.2 Fuzzy First Normal Form

The first one of the classical normal forms that is extended and generalized within the framework of α-equality based fuzzy relational model is the **1NF**.
Definition 4.2.1

Let D_k be the domain of attributes A_k, a relation schema R is called to be in first fuzzy normal form i.e., $F_{1\text{NF}}$ if and only if for any relation r in R, none of the attributes contained multi-valued.

Example 4.2.1

Table-I defined above is in $F_{1\text{NF}}$.

4.3 Fuzzy Second Normal Form

The fuzzy second normal form, $F_{2\text{NF}}$, is based on the concept of the full fkd. By using the concepts of fuzzy key and partial fuzzy functional dependence, we can define the $F_{2\text{NF}}$.

Definition 4.3.1

Let F be the set of fkds for relation schema R and K be a fuzzy key of R at α-level of choice. R is called to be in fuzzy second normal form i.e., $F_{2\text{NF}}$, if and only if for none of the nonprime attributes is partially fuzzy functionally dependent on the fuzzy key.

Example 4.3.1

Let us consider the EMP relation and fkd set F of Table-I.

i.e., $EMP(\text{Name}, \text{City}, \text{City Status}, \text{Experience}, \text{Salary})$ and

$F = \{\text{City} \rightarrow \text{City Status, Experience} \rightarrow \text{Salary, NameCity} \rightarrow \text{Experience}\}$

Fuzzy key: NameCity at 0.9-level of choice.

Here we have the nonprime attributes City Status which is fuzzy partially dependent on fuzzy key NameCity at 0.9-level of choice. So, Table-I is not in $F_{2\text{NF}}$.

To satisfy $F_{2\text{NF}}$ we have to decomposed the above Table-I. Since fkd City \rightarrow City Status is the only fkd violating the $F_{2\text{NF}}$ condition, so the two $F_{2\text{NF}}$ decomposed relations (using the decomposition concept for classical relational database) are

$EMPCityStatus(\text{City}, \text{City Status})$ with fkds

$F1 = \{\text{City} \rightarrow \text{City Status}\}$

Fuzzy Key: City at 0.99-level of choice.

and

$EMP _INFO(\text{Name}, \text{City}, \text{Experience}, \text{Salary})$ with fkds

$F2 = \{\text{Experience} \rightarrow \text{Salary, NameCity} \rightarrow \text{Experience}\}$

Fuzzy Key: NameCity at 0.9-level of choice.
4.4 Fuzzy Third Normal Form (F3NF)

The normalization process takes a relation schema through a series of tests to certify whether it satisfies a certain normal form. The process proceeds in a top-down fashion. In a database design satisfying the fuzzy third normal form i.e., F3NF, insertion, deletion and update anomalies will be minimum.

Definition 4.4.1

Let F be the set of ffd$s for relation schema R and K be a fuzzy key of R at α-level of choice. R is called to be in fuzzy third normal form i.e., F3NF, if and only if R is in F2NF and R should not contain any ffd among fuzzy nonprime attributes i.e., for any non-trivial ffd $X \rightarrow^\alpha A$ in F either X contains the fuzzy key or A is fuzzy-prime.

Example 4.4.1

From this definition of F3NF we can say that the above relation EMPCityStatus is in F3NF, but relation EMP_INFO is not in F3NF. In relation EMP_INFO the ffd Experience $\rightarrow^0.9$ Salary is violating the F3NF condition. So, we decompose the relation EMP_INFO into F3NF relations as follows:

1. EMPExpSal(Experience, Salary) with ffds
 $F_3 = \{ \text{Experience} \rightarrow^0.9 \text{Salary} \}$
 Fuzzy Key: Experience at 0.9-level of choice.

2. EMP_MAIN_INFO(Name, City, Experience) with ffds
 $F_4 = \{ \text{NameCity} \rightarrow \text{Experience} \}$
 Fuzzy Key: NameCity at 1-level of choice. Here fuzzy key is also the classical key.

4.5 Fuzzy Boyce Codd Normal Form (FBCNF)

Like its classical counterpart, fuzzy boyce codd normal form i.e., FBCNF, is a stricter form of fuzzy 3NF. FBCNF ensures that there is no redundancy that can be detected using ffd information alone. It is more desirable normal form from the point of view of redundancy. The formal definition of the FBCNF can be given as follows.

Definition 4.5.1

Let F be the set of ffds for relation schema R and K be a fuzzy key of R at α-level of choice. R is called to be in fuzzy BCNF normal form i.e., FBCNF, if and only if R is in F3NF and for any non-trivial ffd $X \rightarrow^\alpha A$ in F, X must be a fuzzy key or super fuzzy key of R i.e., $K \subseteq X$.

Example 4.5.1

The following decomposed relations satisfying F3NF are also in FBCNF.
EMPCityStatus(City, City_Status), F1 = \{City \rightarrow_{0.99} City_Status\}

EMPExpSal(Experience, Salary), F3 = \{Experience \rightarrow_{0.9} Salary\}

EMP.MAIN.INFO(Name, City, Experience), F4 = \{Name \rightarrow City \rightarrow Experience\}

5. CONCLUSION

Like the classical relational databases, fuzzy relational database is also being suffered from data redundancy and different anomalies if it is not designed properly. Fuzzy normalization based on α-ffd plays an important role in order to design a good fuzzy relational database.

In this paper, firstly we have design an algorithm to find fuzzy closure of attribute set which helps in finding fuzzy key and then normalization process of fuzzy relation has been discussed by defining different fuzzy normal forms i.e., $F_{1 NF}$, $F_{2 NF}$, $F_{3 NF}$, and F_{BCNF}. We have also introduced the definition of fuzzy prime and fuzzy nonprime attributes in order to state the condition for fuzzy normal forms. We illustrate how these fuzzy normal forms can be used to decompose an un-normalized fuzzy relation into a set of normalized relations with an example.

As further study involving the dependency preservation and lossless join property of fuzzy relational database, fuzzy join dependency, fuzzy inclusion dependency and related normal forms has been ongoing.

6. REFERENCES