A REVIEW ON EFFECT OF ADDITION OF NANO PARTICLES ON TRIBOLOGICAL PROPERTIES OF LUBRICANTS

Sangram J. Patil1, D. P. Patil2, A. P. Shrotri3, V P. Patil4

1PG Student, Mechanical Engineering Department, P.V.P.I.T. Budhgaon, India-416304
2,3Associate Professor, Mechanical Engineering Department, P.V.P.I.T. Budhgaon, India-416304
4Assistant Professor, Mechanical Engineering Department, P.V.P.I.T. Budhgaon, India-416304

ABSTRACT

Wear is the progressive loss of the material from the operating surface of machine due to relative motion between surfaces. The successful design of machine elements depends upon essentially on the understanding tribological principles like wear and friction. The lubricating oils are the blood of the machine’s operation, and the service life and economic effectiveness of the machine are relative to the quality, performance and reasonable use of the oils. Nanoparticles put into lubricating oils can improve the properties of extreme pressure, anti-wear and friction reducing. Efficiency and service life of the machine were also improved. In recent years, many scientific researchers have dedicated themselves to studying lubricating oil additives as an important project. In the present review paper, comparative study of tribological properties like anti-wear and friction reducing properties of nano-lubrication oils are studied. In the studied papers nano-lubrication oils are made by adding different nanoparticles like Cu, CuO, TiO2, CeO2 to different lubricating base oils/engine oils in varying proportions.

Keywords: Terms & Definitions.

- **Tribology** is the science and technology of interacting surfaces in relative motion and related subjects and practices.
- **Lubrication** is the process, or technique employed to reduce wear of one or both surfaces in close proximity, and moving relative to each other, by interposing a substance called lubricant.
between the surfaces to carry or to help carry the load (pressure generated) between the opposing surfaces.

- **Lubricant** is a substance introduced to reduce friction between moving surfaces. Types of lubricants are liquids, semi-liquids, solids or gases or any combination of solids, liquids, and gases.

- **Nanomaterials** or nanocrystalline materials are material possessing grain sizes of the order of a billionth (10⁻⁹) of a meter.

- **Nanofluids** are a new class of fluids engineered by dispersing nanometer-sized materials like nanoparticles, nanofibers, nanotubes, nanowires, nanorods, nanosheet, or droplets, in base fluids. In other words, nanofluids are nanoscale colloidal suspensions containing condensed nanomaterials.

- **Nanolubrication** is defined as the means to achieve control of adhesion, friction, stiction, and wear at a scale where properties at nanoscale control the outcome. The lubrication of surfaces at nanoscale will have to be accomplished by tenacious, long-lasting surface films.

- **Tribometer** (tribotester) is the general name given to a machine or device used to perform tests and simulations of wear, friction and lubrication which are the subject of the study of tribology. Several arrangements of tribometers are Four ball, Pin on disc, Block on ring Bouncing ball, Schwingungs Reibungs und Verschleissstest (SRV) test machine, Twin disc

1. INTRODUCTION

The subject Tribology generally deals with technology of lubrication, friction, and wears prevention of surfaces having relative motion under load. The word tribology was first reported in a landmark report by Jost (1966). The word is derived from the Greek word tribos meaning rubbing, so the literal translation would be “the science of rubbing.” Its popular English language equivalent is friction and wear or lubrication science, alternatively used [1]. Nanotechnology is regarded as the most revolutionary technology of the 21st century. There have been many investigations on the tribological properties of lubricants with different nanoparticles added. Typically lubricants contain 90% base oil (most often petroleum fractions, called mineral oils) and less than 10% additives. Oils is a general term used to cover all liquid lubricants, whether they are mineral oils, natural oils, synthetics, emulsions, or even process fluids. Greases are oils, which contain a thickening agent to make them semi-solid. Greases always contain three basic active ingredients; a base mineral or synthetic oil, additives and thickener. For thickeners, metal soaps clays are used. The contrast in lubricating properties between mineral and fatty oils exists also in the case of a pure mineral grease like vaseline and an animal fat such as tallow, the latter possessing in a far greater degree the property of greasiness. A large number of lubricating greases are made by incorporating or emulsifying animal and vegetable fats with soap and water; also by thickening mineral lubricating oils with soap. A large number of lubricating greases are made by incorporating or emulsifying animal and vegetable fats with soap and water; also by thickening mineral lubricating oils with soap. Except in special cases, greases should not be used for quick-running journals, shafts or spindles, on account of the high frictional resistance which they offer to motion. Solid lubrication is simply the lubrication of two surfaces in moving contact by means of solid materials interposed between them. The vast majority of solid lubricant applications are met by only three materials: graphite, molybdenum disulphide, and PTFE (polytetrafluoroethylene). Oil mist is an atomized amount of oil carried or suspended in a volume of pressurized dry air. The oil mist, actually a ratio of one volume of oil suspended or carried in 200,000 volumes of clean, dry air, moves in a piping system (header). Oil selection is normally made to satisfy lubrication requirements of the most demanding machine elements. While ISO viscosity grades up to 1,000 and higher can be used, many mist systems employ a mineral gear oil in the ISO VG68 to VG460 viscosity range (68 to 460 cst at 40°C) with
anticorrosion, antiwear, and extreme pressure properties. The use of nanoparticles as lubricants is a recent idea. Fig.1 shows nanoparticles act as a third body between two metal bodies.

![Fig.1: Nanoparticles act as a third body between two metal bodies [2].](image)

Nanoparticles can also act as nano-bearings on the rubbing surfaces. The above mentioned deposition mechanisms take place only under mixed and boundary lubrication. Results show that they deposit on the rubbing surface and improve the tribological properties of the base oil, displaying good friction and wear reduction characteristics even at concentrations. The main advantage of using nanolubricants is that they are relatively insensitive to temperature and that tribochemical reactions are limited, compared with traditional additives. Another advantage of the addition of nanoparticles in lubricant oils is that they cannot be retained by the filters.

A large number of papers have reported that the addition of nanoparticles to lubricant is effective in reducing wear and friction. The friction-reduction and anti-wear behaviors are dependent on the characteristics of nanoparticles, such as size, shape, and concentration. A nanometer (nm) is smaller a dimension than a µm. and is a billionth (10^{-9}) of a meter. A nanocrystalline material has grains on the order of 1-100 nm. The size of nanoparticles is mostly in the range of 2–120 nm [3]. One significant property that makes nanoparticles different from other materials is the fact that nanomaterials have a massive surface area. Because of their very high surface area, nanoparticles are extremely reactive compared to its larger form. Preparation of nanofluids is the first key step in experimental studies with nanofluids. Nanofluids are not simply liquid-solid mixtures. Some special requirements are essential, e.g., even and stable suspension, durable suspension, negligible agglomeration of particles, no chemical change of the fluid, etc. Commonly used nanoparticles now a days are Oxide Ceramics- Al2O3, CuO, Metal Carbides –SiC, Nitrides – AlN, SiN, Metals – Al, Cu, Nonmetals – Graphite, Carbon nanotubes, Layered – Al+Al2O3, Cu+C, PCM-S/S, Functionalised nanoparticles. Nanofluids are produced by dispersing nanometer-scale solid particles into base liquids such as water, ethylene glycol (EG), oils, etc. In the synthesis of nanofluids, agglomeration is a major problem. There are mainly two techniques used to produce nanofluids, the single-step and the two-step method. The single-step direct evaporation approach was developed by Akoh et al. (1978) and is called the VEROS (Vacuum Evaporation onto a Running Oil Substrate) technique. The original idea of this method was to produce nanoparticles, but it is difficult to subsequently separate the particles from the fluids to produce dry nanoparticles. Generally, ultrasonic equipment is used to intensively disperse the particles and reduce the agglomeration of particles. For example, Eastman et al. (1997), Lee et al. (1999), and Wang et al. (1999) used this method to produce Al2O3 nanofluids. Also, Murshed et al. (2005) prepared TiO2 suspension in water using the two-step method. Other nanoparticles reported in the literature are gold (Au), silver
(Ag), silica and carbon nanotubes. As compared to the single-step method, the two-step technique works well for oxide nanoparticles, while it is less successful with metallic particles. Hwant et al. (2007) prepared various nanofluids (nanoparticle: MWCNT, fullerence, copper oxide, and silicon dioxide; base fluid: DI water, ethylene glycol, and oil) and examined their stability using UV-vis spectral analysis. They claimed that the stability of nanofluid is strongly affected by the characteristics of the suspended particle and base fluids such as the particle morphology, the chemical structure of the particles and base fluid. Furthermore, addition of surfactant can improve the stability of the suspensions. In general, methods such as change of pH value, addition of dispersant, and ultrasonic vibration aim at changing the surface properties of suspended particles and suppressing formation of particle clusters to obtain stable suspensions. However, the addition of dispersants can affect the heat transfer performance of the nanofluids, especially at high temperature [4].

Friction and wear are caused by complicated and multiplex sets of microscopic interactions between surfaces that are in mechanical contact and slide against each other. These interactions are the result of the materials, the geometrical and topographical characteristics of the surfaces, and the overall conditions under which the surfaces are made to slide against each other, e.g., loading, temperature, atmosphere, type of contact, etc. All mechanical, physical, chemical, and geometrical aspects of the surface contact and of the surrounding atmosphere affect the surface interactions and thereby also the tribological characteristics of the system. Therefore, friction and wear are not simply materials parameters available in handbooks; they are unique characteristics of the tribological system in which they are measured. Conclusively, because tribological properties are not materials but system parameters, tribotesting has to be an integral part of both the process of developing tribomaterials and in the selection of materials for applications involving friction and wear. Wear test is carried out to predict the wear performance and to investigate the wear mechanism. From a material point of view, the test is performed to evaluate the wear property of a material so as to determine whether the material is adequate for a specific wear application. From a surface engineering point of view, wear test is carried out to evaluate the potential of using a certain surface engineering technology to reduce wear for a specific application, and to investigate the effect of treatment conditions (processing parameters) on the wear performance, so that optimised surface treatment conditions can be realised. Wear test is performed in three levels, namely, (a) laboratory test, (b) component simulation test, & (c) in-service test. For convenient purpose, the material or component being investigated is normally referred to as specimen, the other termed as counterface. Three most widely used laboratory wear testers a) An abrasive wear tester b) A rolling sliding wear tester c) A pin-on-disc wear tester.

2. LITERATURE REVIEW

Very little work has been reported on nanoparticles used in tribology for friction and wear reduction. A brief review of some selected references on various types with application of nanoparticles is presented below.

Wu et al. [5] examined tribological properties of two lubricating oils, an API-SF engine oil (SAE30LB51153) and base oil (SAE30LB51163-11) with CuO, TiO₂ and Nano-Diamond nanoparticles used as additives. Glycol was used as the solvent, for CuO and TiO₂ nanoparticles in order to prevent the nanoparticles from oxidizing with air. Each lubricant comprised 90% standard oil and 10% additive solution (lubricants modified with CuO and TiO₂ were composed of 9.9% glycol and 0.1% nanoparticles). Friction and wear experiments were performed by using Plint-TE77 reciprocating sliding friction tribotester as shown in Fig. 2. Figure shown below is the schematic for his effort made by the researcher for his experimentation.
Plint-TE77 comprised an upper moving specimen, which came into contact with a lower specimen that was fixed in a temperature-controlled oil bath. The friction coefficient and contact resistance between the rubbing specimens was then measured. For the friction-reduction test, the upper specimen was an iron plate (9mm×12mm×1.5 mm) coated with 0.1mm chromium. The mean sliding speed of this specimen was 120 mm/s under the load of 200 N. For the anti-wear test, the upper specimen was a chromium-coated steel ball of 6mm diameter. The mean sliding speed was 30 mm/s under the load of 100N for the API-SF engine oil. However, if the same load of 100N was used for the Base oil, the specimen would be damaged due to excessive wear. Therefore, the tested load was reduced to be 25N for the Base oil. The fixed specimen was FC25 gray casting iron (38mm×58mm×4 mm). Its hardness was smaller than HB 270. Each lubricant was tested under the temperature ranging from 40 to 160 °C at the increment of 1 °C/min during the total time span of 120 min.

Two experimental conditions of different sliding speeds and loads were adopted to examine the effects of nanoparticles on friction-reduction and anti-wear performances, respectively. Nanoparticles including CuO, TiO2, and Nano-Diamond used as additives in lubricating oils exhibit good friction reduction and anti-wear behavior, especially for CuO. For the friction-reduction test, when CuO was added to the SF oil and the Base oil, the friction coefficients were reduced by 18.4 and 5.8%, respectively, as compared to the oils without nanoparticles. For the anti-wear test, when CuO was added to the SF oil and the Base oil, the worn scar depths were decreased by 16.7 and 78.8%, respectively, as compared to the oils without nanoparticles. The anti-wear properties examined according to the worn scar depth is shown in Table 1. After the 2 h reciprocating sliding test. The worn scar depths of the fixed specimens lubricated by the oil containing nanoparticles are smaller than that of the oils without nanoparticles. When CuO and Nano-Diamond were used as additives for the SF oil, the worn scar depths were reduced by 16.7 and 43.3%, respectively, as compared to the SF oil without nanoparticles. When CuO and Nano-Diamond were used as additives for the Base oil, the worn scar depths were reduced by 78.8 and 62.1%, respectively, as compared to the Base oil without nanoparticles.

He-long et al. [6] studied wear and friction properties of surface modified Cu nanoparticles used as an additives in 50CC. The effect of temperature on tribological properties of Cu nanoparticles was investigated on a four-ball tester. The morphologies, typical element distribution and chemical states of the worn surfaces were characterized by SEM, EDS and XPS, respectively. In order to further investigate the tribological mechanism of Cu nanoparticles, a nano-indentation tester was utilized to measure the micro mechanical properties of the worn surface. The results indicate that the higher the oil temperature applied, the better the tribological properties of Cu nanoparticles are. It can be inferred that a thin copper protective film with lower elastic modulus and hardness is
formed on the worn surface, which results in the good tribological performances of Cu nanoparticles, especially when the oil temperature is higher.

Yu et al. [7] investigated Cu nanoparticles dispersed into SN 650 oil to improve the lubricating properties of the oil. SEM, XPS and nano-indentation tester were utilized to investigate the morphology, chemical state and nano-mechanical properties of the film, respectively. Results show that the friction-reducing and anti-wear properties of SN 650 oil have been improved by adding Cu nanoparticles.

Choi et al. [8] investigated the friction coefficient for raw oil and nano-oil mixed with copper nanoparticles by using a disc-on-disc tribotester between mixed and full-film lubrication regime. The friction surfaces are investigated by using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and atomic force microscopy (AFM). The results show that the average friction coefficient for nano-oil with 25 nm and 60 nm copper nanoparticles under a load of 3000 N is decreased by 44% and 39%, respectively.

Unlu [9] investigated, tribological properties like friction coefficient and wear losses of bearing-journal samples of alloy CuSn10 bronze, CuZn30 brass, ZnAl zamac, AlCuMg2 duralumine, and SnPbCuSb white metal specimens manufactured from metals like Copper, aluminum, zinc and tin–lead were determined by wearing on radial journal bearing wear test rig designed specially for this purpose. He has used SAE 1050 steel shaft as counter abrader. Experiments were carried out in every 30 min for a total of 150 min by using radial journal bearing wear test rig as shown in Fig.3. Figure shown below is the schematic for his effort made by the researcher for his experimentation.

![Fig. 3: Radial journal bearing wear test rig](image)

In this study, a special bearing wear test apparatus has been designed to examine the wearing behaviour of bearing material and the shaft together. Therefore, it is possible to investigate different bearing and shaft materials. The system was formed by a weight applied by a rigid bar, a steel bar connected to the bearing from a distance and a comparator. Friction coefficient was determined from the friction force formed along the rotating direction of the bearing and from the movement of the steel bar connected to the bearing.

The specimens were worn by radial journal bearing wear test rig under lubricated condition, by using SAE 90 gear oil. Results shows that highest friction coefficient and bearing temperature occurred in CuSn10 and CuZn30 bearings, whereas the lowest friction coefficient and bearing weight loss occurred in other ZnAl, AlCuMg2 and SnPbCuSb bearings. The highest journal weight loss occurred at CuZn30 and AlCuMg2 bearings. The highest bearing wear rate occurred in CuSn10 and CuZn30 bearings, and the lowest bearing wear rate occurred in ZnAl bearing. Also the mechanical properties of CuSn10, CuZn30 and AlCuMg2 bearing materials were better than those of ZnAl, and SnPbCuSb bearing materials.
Cai-xiang et al. [10] enhanced the tribological properties of lubricating oil (500SN Base Oil) containing CeO2 and TiO2 nanoparticles with suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecybenzenesulfonate. In the experiment 40 kinds of lubricating oils were prepared, according to different weight fractions (0.2%, 0.4%, 0.6%, 0.8%, 1.0%, respectively) and different weight proportions of CeO2 and TiO2 nanoparticles (0:1, 1:1, 1:2, 1:3, 1:4, 3:1, 2:1, 1:0, respectively). The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.

Rameshkumar et al. [11] investigated the Mechanical and Tribological properties of plain bearing alloys used especially in internal combustion engines. Pin material selected as shaft material AISI D3 (high carbon high chromium steel), having a diameter of 5.041 mm and hardness range 720 BHN. The sliding friction and wear properties of aluminium-tin alloy against high carbon high chromium steel were investigated at different normal loads as (29.43 N, 33.35 N and 36.25 N). Tests were carried by using Pin-on-disc equipment in oil lubricated conditions with a sliding speed of 1 m/s.

Prior to experimentation, the circulating engine oil 20w40 was heated to temperature of 80°C using heater. The frictional behavior and wear property of aluminium-tin alloy were studied by means of pin-on-disk tribometer. The weight loss of the specimen was measured and wear and friction characteristics were calculated with respect to time, depth of wear track, sliding speed and bearing load. Friction coefficient & wear of aluminium-based alloy bearings is less than that of pure aluminium bearing.

To determine the wear mechanism, the worn surfaces of the samples were examined using Scanning Electron Microscope (SEM). The optimum wear reduction was obtained at different normal loads and at same sliding speed.

Thottackkad et al. [12] performed the analysis of coconut oil as a lubricant to find its tribological behavior using a pin-on-disc tribometer. The pin material used was aluminium alloy (Al 98%, Si 2%) having its diameter 8mm and length 27mm and the disc was of steel with a hardness of 60 HRC. The sliding distance was taken as 1000m and track diameter of the disc was 90mm, with speed of rotation of the disc was varied from 1.4 to 5.6 m/s. Copper oxide nanoparticles are added to the oil on weight-percentage basis such as 0.1%, 0.2%, etc., and the variation of its friction-reduction and antiwear properties are analysed. At an optimum concentration of nanoparticles, the coefficient of friction and the specific wear rate are found to be the lowest.

It is seen that the coefficient of friction decreases by increasing concentration of nanoparticles in the lubricant, shows the lowest value for a concentration of 0.34% and then increases. This reveals the presence of an optimum concentration level at which the coefficient of friction is a minimum, for a given speed and normal load. Wear scar obtained in the presence of nano oil is smoother compared to that with bare coconut oil. When the level of nanoparticles increases above the optimum level, friction coefficient and wear rate are seen to increase.

Ingole et al. [13] presented the effects of titanium dioxide additives on the lubricated friction and wear behavior of self-mated E52100 bearing steel using a reciprocating pin-on-disk apparatus (TR-281M-M6). It creates a bidirectional sliding motion between samples while a loading mechanism applies known load on the test samples. The lower sample is stationary such as flat surface or a cut sample of an engine liner and upper sample is movable and usually a spherical ball. The friction and wear characteristics were examined at a constant applied load and rate of reciprocation. All concentrations of P25 (mixture of rutile and anatase phases and TiO2 with only
anatase phase) increased the coefficient of friction, but the addition of TiO$_2$ nanoparticles reduced the variability and stabilized the frictional behavior.

Baskar & Sriram [14] investigated the friction and wear behavior of journal bearing material using pin on disc wear tester with three different lubricating oils i.e. synthetic lubricating oil (SAE20W40), chemically modified rapeseed oil (CMRO), chemically modified rapeseed oil with Nano CuO (40 nm).

In experiment pins of 8 mm diameter and 30 mm length of brass having hardness of 70 HRB and surface roughness of 1.1 R_a used and rotating disc of 165 mm and 8 mm thick of EN-31 hardened steel having hardness 60HRC & ground to surface roughness 1.6 R_a used. Wear tests were carried out at maximum load of 200 N and sliding speeds of 2 – 10 m/s as per ASTM. Behavior of the journal bearing material has changed according to the sliding conditions and lubricating oils. The coefficient of friction, wear of the three different lubricants SAE20W40, chemically modified rapeseed oil (CMRO) and chemically modified rapeseed oil with Nano CuO (CMRO with Nano CuO) are shown in Figs. 9 & 10. The journal bearing material has a lower friction coefficient for CMRO withNano CuO than other two oils. Higher wear of journal bearing material was observed in SAE 20W40 and CMRO. Worn surfaces of the journal bearing material with three lubricating oils were examined using scanning electron microscope (SEM) and wear mechanisms were discussed.

3. CONCLUSIONS

As lubrication oils are popularly used to reduce friction, prevent wear and carry loads needed to keep the machines operating at top efficiency. In the above literatures studied show that the mechanisms of friction-reduction and anti-wear of nanoparticles in lubricant have been reported as colloidal effect, rolling effect, protective film, and third body. Nanoparticles put into lubricating oils can improve the properties of extreme pressure, anti-wear and friction reducing. Efficiency and service life of the machine were also improved.

Majority of literatures studied show use of Cu & CuO nanoparticles used in different base oils. It is found that the nano-oil mixed with copper nanoparticles has a lower friction coefficient and less wear on the friction surface, indicating that copper nanoparticles improve the lubrication properties of raw oil. Also it is observed that nanoparticles have shown good friction and wear reduction characteristics even at concentrations below 2 wt%. However, in some cases, nanoparticles exhibit a deleterious effect, increasing either friction or wear.

4. FUTURE SCOPE

In the further research work comparative study of tribological behavior can be made for different types of base oil and base oils with different nanoparticles as an additives with varying quantities for wear testing of high value engine part materials like shaft and journal bearing, piston and cylinder, gear meshing. In the study of tribological behavior of nano oils, different types of tribometers like Pin on Disk, Four ball, Block on ring, Bouncing ball & Twin disk can be used by selecting proper material at each end. Readings for coefficient friction, wear vs time can be noted down for different disk speed, different load conditions. Optimum values from the above experiments can be used in actual practice.

In the proposed work of experimental study of tribological behavior of lubrication Oil/engine oil, with the different types and in different proportions of nanoparticles used as additives, for the materials used in Crank shaft and Journal bearing of Maruti make model. Block diagram for Pin on Disk Tribometer supplied by DUCOM Instruments, Bangalore is shown below in Fig.4.
This testing equipment is a wear and friction monitor tester used to determine the wear and coefficient of friction of metals under sliding contact. The tester is operated with a pin (size Ø 8 or Ø 12 mm, Length 32 mm) positioned perpendicular to the flat circular disc (Ø165mm, thickness 8mm). The equipment is designed to apply loads up to 200 N and speeds starting from 200 to 2000 rpm. In this apparatus testing of friction and wear characteristics of sliding pin and rotating disc is done for varied normal load, rotational speed & wear track diameter conditions. This testing equipment consists of following different parts a) Machine made of assemblies like Spindle assembly, Loading lever assembly, Sliding plate assembly etc., all mounted on a Base plate over structure. Many items like AC Motor, Drive & all electrical items are fitted inside structure and sides of it are covered with panels. b) Electronic Controller is placed near the machine and all machine operations are controlled by it. It is connected to machine through a set of cables, control cable and signal input cable. b) Sensors to measure the test parameters on this machine. Different sensors used are LVDT (Linear Variable Differential Transduser), Frictional force transducer, Proximity sensor. d) Cables include Control signal cable to carry power from controller to machine panel. Signal input cable to send signals of frictional force and LVDT sensors to controller, Power input cable to supply 230V input supply to machine. Data acquisition cables connected between controller and PC and to send signals received from sensors to PC.

REFERENCES
